

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Python4All

These threes series on Channel 9 [https://channel9.msdn.com/Series/Intro-to-Python-Development?WT.mc_id=python-c9-niner] and YouTube [https://www.youtube.com/playlist?list=PLlrxD0HtieHhHnCUVtR8UHS7eLl33zfJ-] are designed to help get you up to speed on Python. If you’re a beginning developer looking to add Python to your quiver of languages, or trying to get started on a data science or web project which uses Python, these videos are here to help show you the foundations necessary to walk through a tutorial or other quick start.

We do assume you are familiar with another programming language, and some core programming concepts. For example, we highlight the syntax for boolean expressions and creating classes, but we don’t dig into what a boolean [https://en.wikipedia.org/wiki/Boolean_data_type] is or object oriented design [https://en.wikipedia.org/wiki/Object-oriented_design]. We show you how to perform the tasks you’re familiar with in other languages in Python.

What you’ll learn

	The basics of Python

	Common syntax

	Popular packages

Prerequisites

	Light experience with another programming language, such as JavaScript [https://www.edx.org/course/javascript-introduction], Java [https://www.java.com] or C# [https://docs.microsoft.com/dotnet/csharp/]

	An understanding of Git [https://git-scm.com/book/en/v1/Getting-Started]

Courses

Getting started

Python for beginners [https://aka.ms/pythonbeginnerseries] is the perfect starting location for getting started. No Python experience is required! We’ll show you how to set up Visual Studio Code [https://code.visualstudio.com?WT.mc_id=python-c9-niner] as your code editor, and start creating Python code. You’ll see how to manage create, structure and run your code, how to manage packages, and even make REST calls [https://en.wikipedia.org/wiki/Representational_state_transfer].

Python 4 Beginners

	Overview
	print
	print

	input

	Challenges time

	Introducing Python

	PPT Demonstrations

	comments
	Comments

	Challenges time

	How do we get started?

	PPT Demonstrations

	string variables
	Strings

	String Concepts

	Demo: Strings

	PPT Demonstrations

	Challenges time

	What you’ll learn
	numeric variables
	Numeric values

	Numeric Data Types

	Demo: Numbers

	PPT Demonstrations

	Challenges time

	dates
	Date

	Date data types

	Demo: dates

	PPT Demonstrations

	Challenges time

	What we don’t cover
	error handling
	Error Handling

	Date data types

	Demo: dates

	PPT Demonstrations

	Challenges time

	handling conditions
	Handling conditions

	Demo: dates

	PPT Demonstrations

	Challenges time

	handling multiple conditions
	Handling conditions

	Demo: dates

	PPT Demonstrations

	Challenges time

	Prerequisites
	complex condition checks
	Complex condition checks

	Demo: dates

	PPT Demonstrations

	Challenges time

	collections
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	Next steps
	loops
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	functions
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	function parameters
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	packages
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	calling APIs
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	json
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	decorators
	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

	Introducing Python

	Getting started

	Configuring Visual Studio Code

	PPT Demonstrations

Dig a little deeper

More Python for beginners [https://channel9.msdn.com/Series/More-Python-for-Beginners] digs deeper into Python syntax. You’ll explore how to create classes and mixins in Python, how to work with the file system, and introduce async/await. This is the perfect next step if you’re looking to see a bit more of what Python can do.

More Python 4 Beginners

	Overview

	What you’ll learn

	What we don’t cover

	Prerequisites

	Setup steps

	Next steps

	PPT Demonstrations

Peek at data science tools

Even more Python for beginners [https://channel9.msdn.com/Series/Even-More-Python-for-Beginners-Data-Tools] is a practical exploration of a couple of the most common packages and tools you’ll use when working with data and machine learning. While we won’t dig into why you choose particular machine learning models (that’s another course), you will get hands on with Jupyter Notebooks, and create and test models using scikit-learn and pandas.

Even More Python 4 Beginners

	Overview

	What you’ll learn

	What we don’t cover

	Prerequisites

	Next steps

	PPT Demonstrations

Next steps

As the goal of these courses is to help get you up to speed on Python so you can work through a quick start. The next step after completing the videos is to follow a tutorial! Here’s a few of our favorites:

	Quickstart: Detect faces in an image using the Face REST API and Python [https://docs.microsoft.com/azure/cognitive-services/face/QuickStarts/Python?WT.mc_id=python-c9-niner?WT.mc_id=python-c9-niner]

	Quickstart: Analyze a local image using the Computer Vision REST API and Python [https://docs.microsoft.com/azure/cognitive-services/computer-vision/quickstarts/python-disk?WT.mc_id=python-c9-niner?WT.mc_id=python-c9-niner]

	Quickstart: Using the Python REST API to call the Text Analytics Cognitive Service [https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/quickstarts/python?WT.mc_id=python-c9-niner?WT.mc_id=python-c9-niner]

	Tutorial: Build a Flask app with Azure Cognitive Services [https://docs.microsoft.com/azure/cognitive-services/translator/tutorial-build-flask-app-translation-synthesis?WT.mc_id=python-c9-niner]

	Flask tutorial in Visual Studio Code [https://code.visualstudio.com/docs/python/tutorial-flask?WT.mc_id=python-c9-niner]

	Django tutorial in Visual Studio Code [https://code.visualstudio.com/docs/python/tutorial-django?WT.mc_id=python-c9-niner]

	Predict flight delays by creating a machine learning model in Python [https://docs.microsoft.com/learn/modules/predict-flight-delays-with-python?WT.mc_id=python-c9-niner]

Python online Shell

	Python Online Shell

Programming with Python

Over the course of a set of videos we’re going to show you the ropes of Python development. Let’s start by chatting through what we’re going to cover, and if this series is right for you.

Full ‘Intro to Python’ course on Microsoft Learn: Intro to Python [https://aka.ms/MSLearnPython]

Sample code: code [https://github.com/nickcafferry/Python-videos-for-beginners/tree/master/source/python-for-beginners]

Watch the entire series: Py4B [https://aka.ms/PythonBeginnerSeries]

 Overview

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Overview

Getting started with a new environment can be challenging, especially when you literally don’t even speak the language. Fortunately, we created a set of videos to help get you up and running with the language, so you can focus on the task at hand - learning how to create applications using Python.

We don’t dig into specific frameworks, but we help get you ready to start exploring on your own. We’ll show you the core Python concepts you’ll need as you begin your journey into web development on popular frameworks such as Django [https://djangoproject.com] and Flask [https://flask.palletsprojects.com/en/1.1.x/], use AI services such as Cognitive Services [https://azure.microsoft.com/services/cognitive-services/], or even machine learning.

print

	print

	input

	Challenges time

	Introducing Python

	PPT Demonstrations

comments

	Comments

	Challenges time

	How do we get started?

	PPT Demonstrations

string variables

	Strings

	String Concepts

	Demo: Strings

	PPT Demonstrations

	Challenges time

What you’ll learn

	The basics of Python

	Starting a project

	Common syntax

	Package management

numeric variables

	Numeric values

	Numeric Data Types

	Demo: Numbers

	PPT Demonstrations

	Challenges time

dates

	Date

	Date data types

	Demo: dates

	PPT Demonstrations

	Challenges time

What we don’t cover

	Class design and inheritance

	Asynchronous programming

	Basics of programming

error handling

	Error Handling

	Date data types

	Demo: dates

	PPT Demonstrations

	Challenges time

handling conditions

	Handling conditions

	Demo: dates

	PPT Demonstrations

	Challenges time

handling multiple conditions

	Handling conditions

	Demo: dates

	PPT Demonstrations

	Challenges time

Prerequisites

	An understanding of Git [https://git-scm.com/book/en/v1/Getting-Started]

	Light experience with another programming language, such as JavaScript [https://www.edx.org/course/javascript-introduction]

complex condition checks

	Complex condition checks

	Demo: dates

	PPT Demonstrations

	Challenges time

collections

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

Next steps

As the goal of this course is to help get you up to speed on Python so you can work through a quick start, the next step after completing the videos is to follow a tutorial! Here’s a few of our favorites:

	Quickstart: Detect faces in an image using the Face REST API and Python [https://docs.microsoft.com/azure/cognitive-services/face/QuickStarts/Python?WT.mc_id=python-c9-niner?WT.mc_id=python-c9-niner]

	Quickstart: Analyze a local image using the Computer Vision REST API and Python [https://docs.microsoft.com/azure/cognitive-services/computer-vision/quickstarts/python-disk?WT.mc_id=python-c9-niner?WT.mc_id=python-c9-niner]

	Quickstart: Using the Python REST API to call the Text Analytics Cognitive Service [https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/quickstarts/python?WT.mc_id=python-c9-niner?WT.mc_id=python-c9-niner]

	Tutorial: Build a Flask app with Azure Cognitive Services [https://docs.microsoft.com/azure/cognitive-services/translator/tutorial-build-flask-app-translation-synthesis?WT.mc_id=python-c9-niner]

	Flask tutorial in Visual Studio Code [https://code.visualstudio.com/docs/python/tutorial-flask?WT.mc_id=python-c9-niner]

	Django tutorial in Visual Studio Code [https://code.visualstudio.com/docs/python/tutorial-django?WT.mc_id=python-c9-niner]

loops

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

functions

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

function parameters

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

packages

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

calling APIs

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

json

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

decorators

	Collections

	Lists

	Arrays

	Dictionaries

	Demo: dates

	PPT Demonstrations

	Challenges time

Introducing Python

Before you get started on your journey towards learning Python, it’s important to know why! We’ll talk through what Python is, where you’ll use it, and how it can help you problem solve.

 print

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

print

The print function allows you to send output to the terminal：

	
print(*objects, sep=' ', end='n', file=sys.stdout, flush=False)

	Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the default values. If no objects are given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None, sys.stdout will be used. Since printed arguments are converted to text strings, print() cannot be used with binary mode file objects. For these, use file.write(…) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

	1
2

	# the print statement displays a message
print('Hello world')

Find more details on print [https://docs.python.org/3/library/functions.html#print].

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	# Each print statements starts on a new line
print('Hello world')

If you pass nothing to the print statement you get a blank line
print()
print('Did you see that blank line?')

'\n' is a special character sequence that means print new line
you can use it to break the output over multiple lines
print('Blank line \nin the middle of string')

Strings can be enclosed in single quotes or double quotes

	“this is a string”

	‘this is also a string’

	1
2
3
4
5

	# Strings can be enclosed in single quotes
print('Hello world single quotes')

Strings can also be enclosed in double quotes
print("Hello world double quotes")

input

The input function allows you to prompt a user for a value：

	
input([prompt])

	If the prompt argument is present, it is written to standard output without a trailing newline. The function then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read, EOFError is raised. Example:

>>> s = input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"

If the readline module was loaded, then input() will use it to provide elaborate line editing and history features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

	1
2
3
4
5

	# The input funciton allows you to prompt the user for a value
You need to declare a variable to hold the value entered by the user
name = input('What is your name? ')

print(name)

Find more details on input [https://docs.python.org/3/library/functions.html#input].

Parameters:

	prompt: Message to display to the user

return value:

	string value containing value entered by user

Challenges time

There are some challenges you can try to take:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	# Here's a challenge for you to help you practice
See if you can fix the code below

print the message
print('Why won't this line of code print')

print the message
prnit('This line fails too!')

print the message
print "I think I know how to fix this one"

print the name entered by the user
input('Please tell me your name: ')
print(name)

solutions:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	# Here's a challenge for you to help you practice
See if you can fix the code below

print the message
There was a single quote inside the string!
Use double quotes to enclose the string
print("Why won't this line of code print")

print the message
There was a mistake in the function name
print('This line fails too!')

print the message
Need to add the () around the string
print ("I think I know how to fix this one")

print the name entered by the user
You need to store the value returned by the input statement
in a variable
name = input('Please tell me your name: ')
print(name)

Introducing Python

Before you get started on your journey towards learning Python, it’s important to know why! We’ll talk through what Python is, where you’ll use it, and how it can help you problem solve.

 Comments

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [http://www.apache.org/licenses/LICENSE-2.0][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Comments

Comments start with a hash character (#) and allow you to document your code. Comments are ignored when code is executed.

	Comments [https://docs.python.org/3/reference/lexical_analysis.html?highlight=comment]

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by the syntax.

	1
2
3
4

	# This is a comment in my code it does nothing
print('Hello world')
print("Hello world")
No output will be displayed!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	#The enable_pin method is not coded yet
I have created a dummy method so the code
will run without an error
Don't panic if you don't understand this part of the code
we cover methods in a separate module
def enable_pin(user, pin):
 print('pin enabled')

Set current_user and pin to test values
current_user = 'TEST123'
pin = '123456'

Enable PIN check as listed in
security requirements
enable_pin(current_user, pin)

Challenges time

Check the following script and try to find the mistake:

	1
2

	print('Hello world')
print('It's a small world after all')

solutions:

	1
2
3

	# Using double quotes for this string because
the string itself contains a single quote
print("It's a small world after all")

How do we get started?

Now that we know about Python, the next question is, how do we get started? Well, the first thing that we’re going to need is somewhere for Python to run. Python is an interpreted language, so you will need a runtime in which Python can execute. Fortunately, all that you need to do is head on over to Python.org/downloads and you can go ahead and grab it from there.

 Strings

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [http://www.apache.org/licenses/LICENSE-2.0][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Strings

Python can store and manipulate strings. Strings can be enclosed in single or double quotes. There are a number of string methods you can use to manipulate and work with strings

	strings [https://docs.python.org/3/tutorial/introduction.html#strings]

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed in single quotes (‘…’) or double quotes (“…”) with the same result 1 can be used to escape quotes:

>>> 'spam eggs' # single quotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
>>> "doesn't" # ...or use double quotes instead
"doesn't"
>>> '"Yes," they said.'
'"Yes," they said.'
>>> "\"Yes,\" they said."
'"Yes," they said.'
>>> '"Isn\'t," they said.'
'"Isn\'t," they said.'

If you don’t want characters prefaced by to be interpreted as special characters, you can use raw strings by adding an r before the first quote:

>>> print('C:\some\name') # here \n means newline!
C:\some
ame
>>> print(r'C:\some\name') # note the r before the quote
C:\some\name

String literals can span multiple lines. One way is using triple-quotes: “”“…”“” or ‘’‘…’‘’. End of lines are automatically included in the string, but it’s possible to prevent this by adding a at the end of the line. The following example:

>>> print("""\
Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to
""")

produces the following output (note that the initial newline is not included):

Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>>
>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium'

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

>>> 'Py' 'thon'
'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '
... 'to have them joined together.')
>>> text
'Put several strings within parentheses to have them joined together.'

This only works with two literals though, not with variables or expressions:

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal
File "<stdin>", line 1
prefix 'thon'
 ^
SyntaxError: invalid syntax

>>> ('un' * 3) 'ium'
 File "<stdin>", line 1
 ('un' * 3) 'ium'
 ^
SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'
'Python'

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a character is simply a string of size one:

>>> word = 'Python'
>>> word[0] # character in position 0
'P'
>>> word[5] # character in position 5
'n'

Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character
'n'
>>> word[-2] # second-last character
'o'
>>> word[-6]
'P'

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows you to obtain substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'Py'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

Note how the start is always included, and the end always excluded. This makes sure that s[:i] + s[i:] is always equal to s:

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to the end
'on'

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for example:

 +---+---+---+---+---+---+
| P | y | t | h | o | n |
 +---+---+---+---+---+---+
 0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0…6 in the string; the second row gives the corresponding negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example, the length of word[1:3] is 2.

Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

However, out of range slice indexes are handled gracefully when used for slicing:

>>> word[4:42]
'on'
>>> word[42:]
''

Python strings cannot be changed — they are immutable. Therefore, assigning to an indexed position in the string results in an error:

>>> word[0] = 'J'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

If you need a different string, you should create a new one:

>>> 'J' + word[1:]
'Jython'
>>> word[:2] + 'py'
'Pypy'

The built-in function len() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

	string methods [https://docs.python.org/3/library/stdtypes.html#string-methods]

	
class str(object=b'', encoding='utf-8', errors='strict')

	Return a str version of object. See str() for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

	1
2
3
4
5

	# You can store strings in variables
first_name = 'Susan'

The variable can then be used later in your code
print(first_name)

Converting to string values

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# There are a number of string functions you can use
on string variables
sentence = 'The dog is named Sammy'

upper will return the string in uppercase letters
print(sentence.upper())

lower will return the string in lowercase letters
print(sentence.lower())

capitalize will return the string with the first letter uppercase
and the rest of the string in lowercase
print(sentence.capitalize())

count will count the number of occurrences of the value specified
in the string, in this case how many times the letter 'a' appears
print(sentence.count('a'))

	str [https://docs.python.org/3/library/functions.html#func-str]

When naming variables follow the PEP-8 Style Guide for Python Code

	PEP-8 Style Guide [https://www.python.org/dev/peps/pep-0008/#naming-conventions]

	1
2
3
4
5
6
7
8

	# Ask the user for their first and last name
first_name = input('What is your first name? ')
last_name = input('What is your last name? ')

the capitalize function will return the string with
the first letter uppercase and the rest of the word lowercase
print ('Hello ' + first_name.capitalize() + ' ' \
 + last_name.capitalize())

	1
2
3
4
5
6
7
8

	# You can use the + operator to concatenate strings
first_name = 'Susan'
last_name = 'Ibach'
print(first_name + last_name)

If you want a space between the strings you must include the space
within the string
print('Hello ' + first_name + ' ' + last_name)

String Concepts

Let’s get in and take a look at probably one of the most common things that you’ll be doing in programming, and that is working with strings.
Now, when it comes to strings and actually just variables in Python, it’s relatively straightforward to take a string and store it inside of a variable.

Now as a real quick aside, if you’re not already familiar with variables, variables windup acting as placeholders inside of your code for some values.

 Numeric values

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Numeric values

Python can store and manipulate numbers. Python has two types of numeric values: integers (whole numbers) or float (numbers with decimal places)

	numeric types [https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex]

When naming variables follow the PEP-8 Style Guide for Python Code

	PEP-8 Style Guide [https://www.python.org/dev/peps/pep-0008/#naming-conventions]

Converting to numeric values

	int [https://docs.python.org/3/library/functions.html#int]

	
class int(x, base=10)

	Return an integer object constructed from a number or string x, or return 0 if no arguments are given. If x defines __int__(), int(x) returns x.__int__(). If x defines __index__(), it returns x.__index__(). If x defines __trunc__(), it returns x.__trunc__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in between) and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having values 10 to 35. The default base is 10. The allowed values are 0 and 2–36. Base-2, -8, and -16 literals can be optionally prefixed with 0b/0B, 0o/0O, or 0x/0X, as with integer literals in code. Base 0 means to interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int(‘010’, 0) is not legal, while int(‘010’) is, as well as int(‘010’, 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__ method, that method is called to obtain an integer for the base. Previous versions used base.__int__ instead of base.__index__.

	float [https://docs.python.org/3/library/functions.html#float]

	
class float([x])

	Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally embedded in whitespace. The optional sign may be ‘+’ or ‘-‘; a ‘+’ sign has no effect on the value produced. The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More precisely, the input must conform to the following grammar after leading and trailing whitespace characters are removed:

sign ::= “+” | “-”
infinity ::= “Infinity” | “inf”
nan ::= “nan”
numeric_value ::= floatnumber | infinity | nan
numeric_string ::= [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in Floating point literals. Case is not significant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an OverflowError will be raised.

For a general Python object x, float(x) delegates to x.__float__(). If __float__() is not defined then it falls back to __index__().

If no argument is given, 0.0 is returned.

Examples:

>>> float('+1.23')
1.23
>>> float(' -12345\n')
-12345.0
>>> float('1e-003')
0.001
>>> float('+1E6')
1000000.0
>>> float('-Infinity')
-inf

	complex [https://docs.python.org/3/library/functions.html#complex]

	
class complex([real[, imag]])

	
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If the first parameter is a string, it will be interpreted as a complex number and the function must be called without a second parameter. The second parameter can never be a string. Each argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion like int and float. If both arguments are omitted, returns 0j.

For a general Python object x, complex(x) delegates to x.__complex__(). If __complex__() is not defined then it falls back to __float__(). If __float__() is not defined then it falls back to __index__().

	Note

	When converting from a string, the string must not contain whitespace around the central + or - operator. For example, complex(‘1+2j’) is fine, but complex(‘1 + 2j’) raises ValueError.

Numeric Data Types

So now you’ve learned how to work with strings, let’s take a look at how we work with numbers inside our Python code as well. Just like strings numbers can be stored inside variables.

We always want to give those variables nice meaningful names get in
the habit of that right away, and we can pass those variables into functions like the print statement.

So the print statement can take a variable that contains a string, a variable that contains a number.It really doesn’t matter either way, it’ll just print what it’s received out onto the screen.

	1
2
3

	# You can use variables to store numeric values
pi = 3.14159
print(pi)

 Date

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Date

The datetime module [https://docs.python.org/3/library/datetime.html] contains a number of classes for manipulating dates and times.

Fast implementation of the datetime type.

	
class datetime.date

	Bases: object

date(year, month, day) –> date object

	
ctime()

	Return ctime() style string.

	
day

	

	
fromisocalendar()

	int, int, int -> Construct a date from the ISO year, week number and weekday.

This is the inverse of the date.isocalendar() function

	
fromisoformat()

	str -> Construct a date from the output of date.isoformat()

	
fromordinal()

	int -> date corresponding to a proleptic Gregorian ordinal.

	
fromtimestamp()

	Create a date from a POSIX timestamp.

The timestamp is a number, e.g. created via time.time(), that is interpreted
as local time.

	
isocalendar()

	Return a 3-tuple containing ISO year, week number, and weekday.

	
isoformat()

	Return string in ISO 8601 format, YYYY-MM-DD.

	
isoweekday()

	Return the day of the week represented by the date.
Monday == 1 … Sunday == 7

	
max = datetime.date(9999, 12, 31)

	

	
min = datetime.date(1, 1, 1)

	

	
month

	

	
replace()

	Return date with new specified fields.

	
resolution = datetime.timedelta(days=1)

	

	
strftime()

	format -> strftime() style string.

	
timetuple()

	Return time tuple, compatible with time.localtime().

	
today()

	Current date or datetime: same as self.__class__.fromtimestamp(time.time()).

	
toordinal()

	Return proleptic Gregorian ordinal. January 1 of year 1 is day 1.

	
weekday()

	Return the day of the week represented by the date.
Monday == 0 … Sunday == 6

	
year

	

	
class datetime.datetime(year, month, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]])

	Bases: datetime.date

The year, month and day arguments are required. tzinfo may be None, or an
instance of a tzinfo subclass. The remaining arguments may be ints.

	
astimezone()

	tz -> convert to local time in new timezone tz

	
combine()

	date, time -> datetime with same date and time fields

	
ctime()

	Return ctime() style string.

	
date()

	Return date object with same year, month and day.

	
dst()

	Return self.tzinfo.dst(self).

	
fold

	

	
fromisoformat()

	string -> datetime from datetime.isoformat() output

	
fromtimestamp()

	timestamp[, tz] -> tz’s local time from POSIX timestamp.

	
hour

	

	
isoformat()

	[sep] -> string in ISO 8601 format, YYYY-MM-DDT[HH[:MM[:SS[.mmm[uuu]]]]][+HH:MM].
sep is used to separate the year from the time, and defaults to ‘T’.
timespec specifies what components of the time to include (allowed values are ‘auto’, ‘hours’, ‘minutes’, ‘seconds’, ‘milliseconds’, and ‘microseconds’).

	
max = datetime.datetime(9999, 12, 31, 23, 59, 59, 999999)

	

	
microsecond

	

	
min = datetime.datetime(1, 1, 1, 0, 0)

	

	
minute

	

	
now()

	Returns new datetime object representing current time local to tz.

	tz

	Timezone object.

If no tz is specified, uses local timezone.

	
replace()

	Return datetime with new specified fields.

	
resolution = datetime.timedelta(microseconds=1)

	

	
second

	

	
strptime()

	string, format -> new datetime parsed from a string (like time.strptime()).

	
time()

	Return time object with same time but with tzinfo=None.

	
timestamp()

	Return POSIX timestamp as float.

	
timetuple()

	Return time tuple, compatible with time.localtime().

	
timetz()

	Return time object with same time and tzinfo.

	
tzinfo

	

	
tzname()

	Return self.tzinfo.tzname(self).

	
utcfromtimestamp()

	Construct a naive UTC datetime from a POSIX timestamp.

	
utcnow()

	Return a new datetime representing UTC day and time.

	
utcoffset()

	Return self.tzinfo.utcoffset(self).

	
utctimetuple()

	Return UTC time tuple, compatible with time.localtime().

	
class datetime.time

	Bases: object

time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) –> a time object

All arguments are optional. tzinfo may be None, or an instance of
a tzinfo subclass. The remaining arguments may be ints.

	
dst()

	Return self.tzinfo.dst(self).

	
fold

	

	
fromisoformat()

	string -> time from time.isoformat() output

	
hour

	

	
isoformat()

	Return string in ISO 8601 format, [HH[:MM[:SS[.mmm[uuu]]]]][+HH:MM].

timespec specifies what components of the time to include.

	
max = datetime.time(23, 59, 59, 999999)

	

	
microsecond

	

	
min = datetime.time(0, 0)

	

	
minute

	

	
replace()

	Return time with new specified fields.

	
resolution = datetime.timedelta(microseconds=1)

	

	
second

	

	
strftime()

	format -> strftime() style string.

	
tzinfo

	

	
tzname()

	Return self.tzinfo.tzname(self).

	
utcoffset()

	Return self.tzinfo.utcoffset(self).

	
class datetime.timedelta

	Bases: object

Difference between two datetime values.

timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)

All arguments are optional and default to 0.
Arguments may be integers or floats, and may be positive or negative.

	
days

	Number of days.

	
max = datetime.timedelta(days=999999999, seconds=86399, microseconds=999999)

	

	
microseconds

	Number of microseconds (>= 0 and less than 1 second).

	
min = datetime.timedelta(days=-999999999)

	

	
resolution = datetime.timedelta(microseconds=1)

	

	
seconds

	Number of seconds (>= 0 and less than 1 day).

	
total_seconds()

	Total seconds in the duration.

	
class datetime.timezone

	Bases: datetime.tzinfo

Fixed offset from UTC implementation of tzinfo.

	
dst()

	Return None.

	
fromutc()

	datetime in UTC -> datetime in local time.

	
max = datetime.timezone(datetime.timedelta(seconds=86340))

	

	
min = datetime.timezone(datetime.timedelta(days=-1, seconds=60))

	

	
tzname()

	If name is specified when timezone is created, returns the name. Otherwise returns offset as ‘UTC(+|-)HH:MM’.

	
utc = datetime.timezone.utc

	

	
utcoffset()

	Return fixed offset.

	
class datetime.tzinfo

	Bases: object

Abstract base class for time zone info objects.

	
dst()

	datetime -> DST offset as timedelta positive east of UTC.

	
fromutc()

	datetime in UTC -> datetime in local time.

	
tzname()

	datetime -> string name of time zone.

	
utcoffset()

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

Date and time types:

	date stores year, month, and day

	time stores hour, minute, and second

	datetime stores year, month, day, hour, minute, and second

	timedelta a duration of time between two dates, times, or datetimes

When naming variables follow the PEP-8 Style Guide for Python Code

	PEP-8 Style Guide [https://www.python.org/dev/peps/pep-0008/#naming-conventions]

Converting from string to datetime

	strptime [https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior]

Date data types

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	#To get current date and time we need to use the datetime library
from datetime import datetime, timedelta
The now function returns current date and time
today = datetime.now()

print('Today is: ' + str(today))
#You can use timedelta to add or remove days, or weeks to a date
one_day = timedelta(days=1)
yesterday = today - one_day
print('Yesterday was: ' + str(yesterday))

one_week = timedelta(weeks=1)
last_week = today - one_week
print('Last week was: ' + str(last_week))

 Error Handling

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Error Handling

Error handling in Python is managed through the use of try/except/finally [https://docs.python.org/3.7/reference/compound_stmts.html#except]

Python has numerous built-in exceptions [https://docs.python.org/3.7/library/exceptions.html]. When creating except blocks, they need to be created from most specific to most generic according to the hierarchy [https://docs.python.org/3.7/library/exceptions.html#exception-hierarchy].

Date data types

	1
2
3
4

	x = 42
y = 206
if x == y
 print('Success')

 Handling conditions

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest] [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html] [image: Python version] [https://www.python.org/] — Sep 09, 2020

Copyright © Wei MEI, MLMS™—all rights reserved.
🀤

Handling conditions

Conditional execution can be completed using the if [https://docs.python.org/3/reference/compound_stmts.html#the-if-statement] statement

if syntax

>>> if expression:
code to execute
>>> else:
code to execute
```





Comparison operators [https://docs.python.org/3/library/stdtypes.html#comparisons]


	< less than


	< greater than


	== is equal to


	>= greater than or equal to


	<= less than or equal to


	!= not equal to




	1
2
3
4
5
6
7

	country = input('Enter the name of your home country: ')
if country == 'canada':
	# string comparisons are case sensitive
	# if you typed in CANADA or Canada it will not match
	print('So you must like hockey!')
else:
	print('You are not from Canada')








    

  
    
    Handling conditions
    

    

    
 
  

    
      
          
            
  [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest]  [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html]  [image: Python version] [https://www.python.org/]  —  Sep 09, 2020



Copyright © Wei MEI, MLMS™—all rights reserved.
🀤


Handling conditions

Conditional execution can be completed using the if [https://docs.python.org/3/reference/compound_stmts.html#the-if-statement] statement. Adding elif allows you to check multiple conditions

Boolean operators [https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not]


	x *or* y - If either x OR y is true, the expression is executed




Comparison operators [https://docs.python.org/3/library/stdtypes.html#comparisons]


	< less than


	< greater than


	== is equal to


	>= greater than or equal to


	<= less than or equal to


	!= not equal to


	x *in* [a,b,c] Does x match the value of a, b, or c





    

  
    
    Complex condition checks
    

    

    
 
  

    
      
          
            
  [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=latest]  [image: Python Online] [https://python-videos-for-beginners.readthedocs.io/en/latest/pyonlineindex.html]  [image: Python version] [https://www.python.org/]  —  Sep 09, 2020



Copyright © Wei MEI, MLMS™—all rights reserved.
🀤


Complex condition checks

Conditional execution can be completed using the if [https://docs.python.org/3/reference/compound_stmts.html#the-if-statement] statement.

if syntax

>>> if expression:
        # code to execute
    elif expression:
        # code to execute
    else:
        # code to execute
    ```


Boolean values [https://docs.python.org/3/library/stdtypes.html#boolean-values] can be either False or True

Boolean operators [https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not]

	x *or* y - If either x OR y is true, the expression is executed

	x *and* y - If x AND y are both true, the expression is executed

Comparison operators [https://docs.python.org/3/library/stdtypes.html#comparisons]

	< less than

	< greater than

	== is equal to

	>= greater than or equal to

	<= less than or equal to

	!= not equal to

	x *in* [a,b,c] Does x match the value of a, b, or c

	1
2
3
4
5
6
7
8
9

	# A student makes honour roll if their average is >=85
and their lowest grade is not below 70
gpa = float(input('What was your Grade Point Average? '))
lowest_grade = input('What was your lowest grade? ')
lowest_grade = float(lowest_grade)

if gpa >= .85 and lowest_grade >= .70:
		print('You made the honour roll')

 Collections

 [image: Deployment Status] [https://github.com/nickcafferry/Python-videos-for-beginners/runs/1054191359?check_suite_focus=true][image: Apache License] [https://github.com/nickcafferry/Python-videos-for-beginners/blob/master/LICENSE][image: Documentation Status] [https://python-videos-for-beginners.readthedocs.io/en/latest/?badge=late